M68HC12 and HCS12 microcontrollers

ENG SC757 - Advanced Microprocessor Design

The CPU12 is a high-speed,

16-bit processing unit, with

an identical programming

model to the industry
standard M68HC11 CPU

e High performance with 40
ns minimum instruction
cycles

e Flexible addressing modes,
on-chip Flash, and a whole
slew of on-chip peripherals

U12 has two 8-bit
| purpose

ulators (A and B)
can also be accessed
gle 16-bit register (D)
dex registers (X and Y)
r indexed addressing
tack Pointer (SP),

le anywhere in the
ddress space

rogram Counter (PC)
ondition Code Register

pe—

e The Condition Code Register consists of 5 status
indicators, 2 interrupt masks, and a STOP
instruction control bit

« S Control Bit. Clearing the S bit enables the STOP
instruction which stops the on-chip oscillator. If
set, the CPU treats the STOP instruction as a NOP.

+ X Mask Bit. The XIRQ# signal poses as a modified
version of the NMI# interrupt. Enabling anon-
maskable interrupt before a system is fully
operational can lead to spurious interrupts. The X
bit allows for the enabling of the NMI once the
system is operational

« H Status Bit. The H bit indicates a half-carry on the
accumulator. It is used by the DAA instruction on

BCD operations

| Mask Bit. The | bit enables or disables all
maskable interrupts. The | bit is set to 1 (masked)
at reset. While I is set, interrupts can become
pending and are remembered, but the system is not
interrupted until the | mask is cleared.

« N Status Bit. The N bit is mostly used in two’s

complement arithmetic and shows the state of the

MSB of the result.

Z Status Bit. Zis set when the result of an

operation is 0.

V Status Bit. Vis the overflow indicator.

C Status Bit. Cis set when carry occurs during an

addition, or a borrow is needed during subtraction.

.

.

e The CPU12 employs an extensive Addressing
Mode scheme:

« Inherent « Indexed (accumulator

* Immediate offset)

« Direct « Indexed (9-bit offset)

« Extended « Indexed (16-bit offset)

« Relative « Indexed-Indirect (16-
bit offset)

« Indexed (5-bit offset)
« Indexed (pre-dec.)

« Indexed (pre-inc.)

« Indexed (post-dec.)
« Indexed (post-inc.)

« Indexed-Indirect (D
accumulator offset)

« Inherent Addressing Mode
« Instructions that use this addressing mode either
have no operands, or the operands are CPU

registers
+ NOP ; Does not have an operand
« INX ; Operand is a CPU register

+ Immediate Addressing Mode
+ Operands for Inmediate Addressing mode are
present during normal program fetch cycle. The ‘#
symbol is used to identify the immediate operand
+ LDAA #$55 ; Load A with 8-bit value
LDX #$1234 ; Load X register with 16-bit value

e Direct Addressing Mode
« Also called a zero-page addressing mode because it is
used for operands in the $0000 - $00FF memory range. A
system can be optimized by placing most commonly used
operands in this range
* LDAA $55 ; Load A with content at addr $55
- Extended Addressing Mode
« In this addressing mode, the full 16-bit address of the
memory location is employed
+ LDAA $F123
« Relative Addressing Mode
+ Used by the branch instruction
* The offset provided is added to the address of the next
memory location after the offset to form an effective
address

e Indexed Addressing: 5-bit offset

« The 5-bit offset is added to the base index register
(X, Y, SP, or PC) to determine the effective address

« Provides arange of -16 through +15
Majority of indexed instructions use offsets that fit
in the 5-bit size indexing mode
e Indexed Addressing: 9-bit offset

+ Same as above, but with 9-bit offsetting.

« Allows for arange of —256 through +256 from the

value of the base index register

« Example: “LDAB -20,Y”, for Y = $2000, loads B

with the value at address $1FEC

.

e Indexed Addressing: 16-bit offset
+ Allows access to addresses anywhere within the 64
Kbyte address space
« Does not matter whether it is signed or unsigned,
since $FFFF can be treated either as +65,535, or as
a-1
e Indexed-Indirect Addressing: 16-bit offset
+ Unlike indexed addressing, this addressing mode
is used to change the contents of the memory
pointed to by an address
+ For example,
LDAA [10,X] ; X =$1000, *($1010) = $1234
Takes the address contained in X and adds 10 to it.
Loads the contents of memory location $1010
to make A = $1234

e Auto Pre/Post Increment/Decrement Indexed
Addressing
+ This addressing mode provides four ways of
automatically incrementing or decrementing a
pointer after processing the instruction
+ Preinc/dec adjusts the value of the index register
prior to using it
« Postinc/dec adjusts the value of the index register
after the operation is complete
« Example
+ STAA 1,-SP ; Equivalent to PSHA
« STX 2-SP ; Equivalent to PSHX
« LDX 2,SP+ ;Equivalentto PULX
+ LDAA 1,SP+ ; Equivalent to PULA

e Accumulator Offset Indexed Addressing
« In this addressing mode, the effective offset is the
sum of the value of the index register, and the
unsigned offset in the accumulator
+ Example
LDAA B,X Loads A with contents of X+B
e Accumulator D Indirect Indexed Addressing
« Similar to above, except that it points to the
memory location which contains the value to load

« This instruction acts as a computed GOTO. When
the JMP instruction is executed, PC points to GO1.
Therefore values for D of 0, 2, 4, will point to GO1,

GO2, or GO3

.

e Addressing above the 64K boundary

Systems that employ a large linear address space
also require wider instruction sets that address the
larger memory space. This causes an unnecessary
overhead for the CPU12 class of processors.

The CPU12 employs a transparent bank-switching
scheme

Interrupts need not be turned off during bank-
switching

The CPU12 treats a 16K range of memory from
$8000 to $BFFF as a program memory window

The Program Page Register (PPAGE) allows for
256 16Kbyte pages to be switched in and out of the
program memory window

This provides up to 4 Megabytes of memory

e The CPU12 has several sources of Interrupts

Reset
+ Power-on Reset (POR) and RESET#
« Clock Monitor Reset
+ COP Watchdog Reset
Unimplemented Opcode Trap
Software Interrupt Instruction (SWI)
Non Maskable Interrupt (X-bit)
Non Maskable Interrupt (I-bit)

e The CPU12 can handle up to 128 exception
vectors, but the number varies with each device

e CPU12 Exception Vector Map

e CPU12 Exception Priority

RESET# or POR

Clock Monitor Reset

COP Watchdog Reset

NMI (XIRQ#)

Unimplemented Opcode

. Software Interrupt (SWI)

e Theremaining interrupts are subject to masking
via the | bit in the CCR.

However, other than the IRQ# pin and the internal
periodic real-time interrupt generator, all other
maskable sources follow a priority directly related
to the address of their interrupt vectors.

The higher the address, the higher the Priority

OO e N PR

e Load and Store Instructions

[meemen= T Famction. | Cprmon

= Lot e regeetr

[L et rogeetr

Lt eeition sorews wia 55| SPeckve sdieris 9 5

Tond sieiion st s Eoeiirs siwas =

(] Load afecien aaewes o ¥ Eeciove aiwaa = ¥

e Transfer and Exchange Instructions

e o

e Move Instructions

[t Furnon, T Cperon |
[Twow | wemmwnm | e,
[[Sememian | wwr=wws |

Mrarorec Tuncton
aBs oI

e Addition and Subtraction Instructions

Cperaton

e merscey o O A

o Decrement and Increment Instructions

e Compare and Test Instructions

e | o
e i
D “a

e Boolean Logic Instructions

O COH wen mamory (e CCR S

SR+ M= CoR

e Bit Test & Manipulation Instructions

Mearoree

Tuncten
S by ey

Cpermon

o0

B s

s

s

e Clear, Complement, and Negate
Instructions

e Multiplication and Division Instructions

e | Fantnon [v

|
X |

4 by 1 s e

]

8 by 4 ik v g

e Shift and Rotate Instructions

« Fuzzy Logic Weighted Average Instruction

+ Computes a sum-of-products and a sum-of-weights
for defuzzification

« Maximum and Minimum Instructions

+ Used to make comparisons between an
accumulator and a memory location. Used for
fuzzification

« Multiply and Accumulate Instruction

= == o

JSY e pe—r———Tly TS T
[[wes | MSratmosye | et

e Table Interpolation Instructions
« Interpolate values from tables stored in
memory.
« Any function which can be represented as a
series of linear equations can be represented
by this method

Short Branch Instructions

e Long Branch Instructions

10

e Bit Condition Branch Instructions

[—= Tomon T |
| e e £ wcand o oo W

[Tomer) |

e Loop Primitive Instructions

e Jump and Subroutine Instructions

o Famatim G

s Banca 0 sssnans

e Interrupt Instructions

11

e Index Manipulation Instructions

e Stacking Instructions

e Pointer and Index Calculation Instructions

12

e Condition Code Instructions

Tuncion

e Background Mode Instructions

Trarser R A Cemm A

[———

Tt Dpmratnn
IO praied. pener B0
w5 nre o ey

Bemch s B et ranch,

Lo brwren vt B it .

t users and technical manuals. Original content Copyright © 2005 — Babak Kia

13

